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Effect of lattice defects on Hele-Shaw flow over an etched lattice

E. L. Decker, Jordi Ign&Mullol,* A. Baratt, and J. V. Maher
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
(Received 20 November 1998; revised manuscript received 22 April)1999

We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw
cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of
defects(0—10%). In all cases, a quantitative measure of the pattern ramification shows a regular trend with
injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding
defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case,
the scaling behavior persists. Only the prefactor of the scaling function shows a dependence on the defect
density. For different lattice defect densities, we examine the nature of the different morphology phases.
[S1063-651%99)12508-X

PACS numbd(s): 68.70+w, 47.20.Gv, 47.54:r, 47.20.Hw

[. INTRODUCTION drites at high driving force, which grow along a different
direction from those at low driving force, result from kinetic
Many researchers have examined the patterns formeeffects[7,8,10. In between these surface-tension dendritic
when one fluid is forced into another of higher viscosity and kinetic dendritic regimes, a tip splitting viscous fingering
between two closely spaced flat surfa¢@Hele-Shaw cell ~ regime result$7,8,10. As discussed above, experiments ex-
[1,2]. If the otherwise flat surfaces have an imposed anisothibit these different morphological phases, and good agree-
ropy (for instance, a periodic lattice imposed on one of thement between experimental and theoretical dendrite shape
surfacey driven fluid interfaces exhibit very complicated an- and evolution have been achieved.
isotropic viscous fingering patterns, and under some condi- We report measurements made in a radial Hele-Shaw cell
tions dendritic patterns can be formed, reminiscent of classiwith smooth plates and in a series of anisotropic, radial Hele-
cal dendrites observed in solidificatiof8—9]. To our Shaw cells wherein we vary the density of defects in the
knowledge, the effect of lattice defects in viscous fingeringimposed lattice. We present quantitative analysis of pattern
in an anisotropic Hele-Shaw cell has rarely been addressegharacteristics for all cases studied. We also discuss, quali-
[4,6]. One numerical simulation and an experimental studytatively, the effect of lattice defects on the different morphol-
employed a porous medium with no gap and flow onlyogy phases.
within etched channelg!]. For a similar system there was a
gap[6]. These studies varied the randomness in the channel
widths and produced thinner dendritic fingers and enhanced
side branching when compared to the case with constant Our horizontal, radial Hele-Shaw cell is formed by a
channel width. This is consistent with our results and may bemooth, rigid upper glass platg.5 cm thick, 61 cm diam-
a general feature of dendritic growth in the presence of deete) with a 6 mmdiameter hole in the center, and a lower
fects. smooth glass plate of diameter 56 cm and thickness 1.25 cm.
Some progress has been made in describing the morphalhe lower plate rests on a large square, 1.25 cm thick glass
ogy of the patterns formed in an anisotropic, radial Hele-plate in a bath of heavy paraffin diFisher Scientific, 0122-
Shaw cell and in relating observed morphology to variationd). The oil has a viscosity of 1.7 P and a surface tension of
of control parameter$3,5,7—9. Theoretical work has ex- 31 dyn/cm at 24 °C. Nitrogen gas is the less viscous fluid
plored the similar morphologies occurring in solidification which displaces the paraffin oil during a flow realization. To
[10,11. Some studies have constructed morphology phasmtroduce the nitrogen under controlled conditions, we fill a
diagrams showing the types of pattefpbasesformed over large reservoifa metal box with 28 L capacifywith nitro-
different ranges of the control parametggs5,7,9. In other  gen to a relative pressure of 4 psi. Then using flow valves,
studies, dendritic finger growth has been analyzed theoretive inject nitrogen from the reservoir at constant flow rate
cally [11] and experimentally8] and found in each case to into the Hele-Shaw cell through the hole in the upper glass
exhibit a power-law relation between finger tip position andplate. The areal flow ratéor areal growth rafe Q, is ob-
time. These same studies also show a successful scaling @fined from a linear fit to the ared, of the growing pattern
the dendrites at all stages of growth to match a theoreticalersus timef. During a flow realization, the evolution of the
shape. Descriptions of anisotropic pattern growth explain thg@attern is viewed with a CCD camera and videotaped with an
dendritic patterns produced at low driving force to be con-S-VHS recorder. The images are later digitized and computer
trolled by an effective anisotropic surface tension, while den-analyzed.
To produce anisotropy in the cell, a circular circuit board
(40 cm diameter with an etched rectangular lattice is
*Present address: Department of Chemistry, Tulane Universitynounted onto the lower circular glass plate. The copper is-
New Orleans, LA 70118. lands of the etched lattices are 0.07 mm thick and their lat-
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FIG. 2. Details of the etched lattice on the circuit boards with

- varying amounts of defects®) 0%, (b) 3%, (c) 10%. The vertical

scale bar is 3 mm long. The dimensions of the copper islands are
shown in Fig. 1.

3%, and 10%(See Fig. 2. We place Teflon spacers or strips
of overhead transparency film between the upper glass plate
FIG. 1. Close-up view of each of the three etched circuit boardsand the circuit boardnear the outer edge of the boatd set
used. A section of each circuit board is shown, containing a unit cely gap of sizeb between the plates. We report measurements

of the lattice but no defectgDefects are clearly seen in Fig. 2, for gap sizes ob=0.11 mm, 0.22 mm, 0.38 mm, 0.79 mm,
where a larger section of each of the boards is shoWoepper gnd 1.59 mm.

islands are 0.07 mm thick with lateral dimensiofe: perfect lat-

tice, 0.14x0.47 mm;(b) 3% defective lattice, 0.170.55 mm;(c) I1l. RESULTS AND DISCUSSION

10% defective lattice, 0.240.46 mm. The unit cel(shown by o . " .

dashed linesis the same for the three boards: 04D80 mm. Chara(_:tenzatlons of tip position versus time and shapes
Uncertainty in all lateral dimensions &0.01 mm. for dendrites were calculated by Almgrenal.[11] and ob-

served by Igns-Mullol et al. [8] for the case of the perfect

lattice. Evolution of dendrites with significant side branching
eral dimensions are shown in Fig. 1. Three lattices in Fig. kthe type we observe with defective lattiteis not well
show slightly different lateral dimensions for the etched cop-suited to this type of scaling analysis. Dendrites produced
per islands(but not for the unit ce)l Using lattices with no  with perfect lattices exhibit main, needlelike fingers growing
defects and with copper island variations even larger thamalong the lattice axes with increasing width and only minor
those seen in Fig. 1, we have observed that these small di§ide branching. Such dendrites can be scaled to match a char-
ferences in the regular parts of the etched plates do not alt@cteristic dendrite shapié]. However, with defective lat-
our results significantly compared to the effects of latticetices, we observéSec. 1l O dendrites which exhibit main
defects.(We do observe that the quality of the dendrites isfingers with nearly constant width and significant growth in
somewhat sensitive to the details of the etched rectanguldhe form of side branching. Thus, we cannot meaningfully
islands. However, the copper islands on our etched lattice8PPly the scaling analysis for smooth, needlelike dendrites to
were not circular enough for us to observe coexistence ofie more ramified, side branching dendrites produced with
morphology phases as reported by Banpurésal. [12])  defective lattices. Rather, since defective lattices enhance
Imperfect plates were produced by leaving def¢ateetched ~ Side branching, we choose an analysis technique that quanti-
copper regionsin the grooves between randomly selectedfies the pattern ramification by measuring pattern perimeter
copper islands. The percentage of defects for a given platel3,14.
refers to the total area of unetched copper which forms the
defects, relative to the total etched groove area on a perfect
lattice with no defects. We report measurements with circuit Dimensional analysis of the isotropic flow equations for
boards with defect percentages of Qfdr the perfect lattice ~ Hele-Shaw flow in a radial geometry gives a characteristic

A. Smooth plates
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FIG. 3. Scaling of patterns produced between smooth plates, from many flow realizations at different flo@y itésthree patterns
(with different areasfrom each flow realization, and at gaps (ofrcles b=0.11 mm,(downward trianglesb=0.22 mm,(diamond$ b
=0.38 mm,(upward trianglesb=0.79 mm,(squaresb=1.59 mm.(a) p’ plotted vs dimensionless timg,. A linear least-squares fit to the
data for logt’)>4 gives an average scaling exponentgor-t'Z of z=0.66+0.01.(b) p’/t’ 2 plotted vst’ clearly shows a compact-growth
regime wherep'/t'*? is constant, and a regime of ramification wherdt’ 2 increases(c) p’ plotted vSAQ?. Horizontal axis units are
log(cnt/s). Here, data from different gaps segregate into separate curves.

length,L,=b/Ca, and a characteristic timg,=b%/(QC&), ferent areasfrom different times during the flowproduced
where Ca= 1 Q/(ob) is the usual form of the capillary num- at the same flow rate&Q, as well as data from patterns pro-
ber in this type of flow with viscosity., areal flow rateQ,  duced at different flow rates. This shows that data from sev-
surface tensiorr, and gapb [13]. As we strive to develop eral runs at different values @ andb all collapse to a single
meaningful quantitative measures of patterns, an interestingurve.

quantity is the perimetep, of a pattern, made dimensionless  For our experimental setup, the initial aré®, is small

by Lo (p'=p/Ly) [13,14. As a growing pattern becomes compared to the area of the patterns from which area and
unstable and tip splitting begins, the pattern becomes ramperimeter data were extracted. Thus, since the ahkeaf
fied. The perimeter of the pattern increases during the floveach pattern is A=Ay+Qt~Qt, then t'=tQCe/b?
realization @' is a function oft’). In Fig. 3a), we plot the ~ACa2/b2=A/L(2)=A’. We can compare the scaling behav-
dimensionless perimetep’, versus dimensionless timg,, ior of our patterns to that of compact objects. For a compact
for flow between smooth plates. The data shown includegrowing object(such as a growing circle the perimeter
three patterns from each flow realization. Thus, we plot datashould increase as the square root of the area. Likepise,
produced with different gap values, from patterns with dif-should increase as *2. Careful inspection of the slope for
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FIG. 4. Anisotropy parameteab/b for data from four gapsi=0.22 mm,Ab/b=0.32; b=0.38 mm,Ab/b=0.18; b=0.79 mm,
Ab/b=0.089; b=1.59 mm,Ab/b=0.044) plotted vs capillary number €a.Q/(ob). Patterns from the end of flow realizations at the
corresponding Ca are shown as data points on the plot. The vertical scdhbaing the size of the pattepnis 25 cm long.

Ab/b

0.1

log(t')<4 in Fig. 3a) shows a slope of. (Throughout this gaps are similar to those with smooth plates. This observa-
paper, log means lag) Plotting p’/t’"2 versust’ in Fig.  tion is consistent with the calculations of Sarkar and Jasnow
3(b) very clearly reveals this compact-object growth for[15], where they predict the effects of the anisotropy to van-
log(t')<4. Patterns in this range 6f have minimal tip split- ish when the anisotropy parameter falls below 0.07. Even
ting and are often simple round shapes with congpattt 2 though we are not confident of how to write an anisotropy
For logt’)>4, patterns become ramified amu/t’ Y2 in-. parameter that relates to our experimental parameters, the
creases. The,linear fit of log) vs logtt’) [for log(t’)>4] in strength of the anisotropy may be rglated to the depth of the
Fig. 3@ shows a scaling exponent of 066.01. Thus, grooves,Ab,_ relative to th_e gaph. With Ab=0.07 mm, the
within our range of pattern sizes where fingering occurs, th(?lbove mentioned gaps given/b=0.089 and 0.044, respec-

average scaling exnonent differs significantly from the val ively. At smaller gaps ob=0.38 mm and 0.22 mm, because
0:!; fgr comrl)a%t (;(l?jects ! gt y vaid of the enhanced influence of the latticAl{/b=0.18 and
5 .

In Fig. 3(c), plotting p’ versusAQ? reveals similar scal- 0h32’ r.espefcuvetw we odbse(;v_(;z d|f{erentl morp&;logmal
ing behavior as when plotting verstis. However, such a phases: surface tension dendrites at our lowes{dBarac-

plot allows the gap dependence of the data to be manifest. IWrIi.Z(.ad by Igrowth.45° relgtive (t:o the dlalt(t.ice .axde{s]a t.ip
Fig. 3 (b), the data segregate into separate parallel curves f ltting at low to Intermediate Ca, and kinetic dendrites at

; : AR igher Ca(see Fig. 4. As reported previously for lattices
tehicggp?z-e;ziss,etshe perimeter increases at con tas with twofold symmetry[8], these kinetic dendrites grow

from the injection hole along one axis of the lattice, with tip

splitting fingering growing from the injection hole in other

directions. Figure 4 implies that for increasing anisotropy,
At the larger gaps ob=0.79 mm and 1.59 mm, patterns the transition from viscous fingering to kinetic dendrites

produced over perfectdefect-freg etched lattices at low moves to lower Ca.

flow rates are smooth and round and patterns at our largest Even though with the perfect lattice we can observe den-

flow rates exhibit no dendrites. Thus, results at these largeatritic patterns at small gaps and no dendritic patterns at large

B. Perfect lattice
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D B L I I L log(t’)>4. In this fitting process, the slopes are forced to be
the same, but the intercepts can differ. Thus, we fit pog(
=log(ag oy +zlog(t’) and logp’)=log(a; 59 +zlog(t') si-
multaneously to the data sets for gapsbef0.22 mm and
b=1.59 mm, respectively. Thus, the three parameterzare
g2, anda, so. (This fit has a reduceg? that is about equal
to the average of those obtained by fitting, two-parameter fits
to each data set individually. However, the three-parameter
fit reduces the effect of uncertainty in the individual slopes
from washing out any trend in the intercept¥he results
show that the scaling exponerz=0.68+0.01) is not sig-
nificantly different from that £=0.66+0.01) obtained with
smooth plates(In fact, the fingering patterns produced with
] perfect lattices at the four gaps we used give an average
[ i ] exponent ofz=0.67+0.01) The prefactors in the scaling
| function,p’ =at’? show a nonsignificant dependence on the
| 2 3 4 5 6 7 8 9 anisotropy 6=0.58+-0.08 for b=0.22 mm anda=0.67
log(t ') +0.07 for b=1.59 mn). This insignificant offset of the
curves is difficult to see in Fig.(8). Any difference is even
1 .6 Fr T ———————————————————————— difficult to observe inp’/t’Y2. However, for log(’)>4 in
(b) ] Fig. 5b), p'/t'*? does appear slightly smaller for the case
1 with larger anisotropy. Thus, the scaling behavior we mea-
sure hardly distinguishes between pattern formation with
smooth plates and that with etched lattices.

log(p")

W
T

1.4

C. Defective lattices

To examine the effect of defects in our anisotropic Hele-
Shaw cell, we use a small gapp£0.22 mn) where the
influence of the etched circuit boafthttice and defeclsis
strong. Figure @) shows a comparison qf’ versust’ for
the perfect lattice, and for lattices with 3% and 10% defects.
The data overlap significantly so that by eye it is difficult to
] distinguish any difference between the data from different
04', T defect densities. Figure(® does show significant broaden-

1 2 3 4 5 6 7 8 9 ing of the curve in the' direction compared to that seen in
log(t') Fig. 3(@) and Fig. %a). In order to better _observg the effect of
the defects, we smoothed the data with a window of seven

FIG. 5. Scaling of patterns produced with the perfect lattiee ~ data points in Fig. @). Here, three curves can be distin-
defects at two gaps. The data shown here come from many flonduished for each of the defect densities. By examining the
realizations at different flow rate, with five patterngwith differ- data range where well-developed kinetic dendrites are ob-
ent areasfrom each flow realization(Circles b=0.22 mm, large  served[for log(t’)>7], the smoothed data definitely show
anisotropy.(Squaresb=1.59 mm, small anisotropya) p’ plotted  that, for constant’, the perimeter increases as the defect
vs t' hardly distinguishes between cases of large anisotrdpy (density increases. In Fig.(® we plot p’/t’¥? versust’.
=0.22 mm), small anisotropy lf=1.59 mm), and no anisotropy Here, we observe that the defective lattices produce ramified
[see Fig. 8a)]. A three-parameter fit to both data sets simulta- patterns even for logf)<<4. This is seen mostly in the data
neously (see text gives an average scaling exponentzsf0.68  from the 10% defective plate. In Fig(d we plot the same
+0.01 for the scaling functiorp’=at’*, and prefactors ofa  data but smoothed with an averaging window of seven data
=0.58+0.08 forb=0.22 mm, and1=0.67=0.07 forb=1.59 mm.  points. Here, we clearly observe increased ramificatis
(b p’/t', ,1‘/)2lo-tted vst’ still shows a_ compact-g_r(_)wth regime measured bw//tll/Z) in the dendritic-growth regimest/(
w,he,rle/zp_ /t’7* is constant, and a regime of ramification where _g ¢ andt’>7) as the defect density increases.

p'/t ¥ increases. To further quantify the effect of the defects, in Fidag

we do a simultaneous, four-parameter fit to the three data
gaps, Figs. &) and 5b) show little distinction in the scaling sets(for 0%, 3%, and 10% defegt®ver the entire range of
behavior for isotropic and anisotropic growth. In Fig(& t’. We fit log(’)=log(as)+2og(t’), log(p’)=log(as)
we plotp’ versust’ for patterns produced with the perfect +Zog(t’), and logp’)=log(a,o) +zlog(t’) simultaneously to
lattice at a large gafsmall anisotropy, b=1.59 mm, and at the data sets for 0%, 3%, and 10% respectively. Thus, the
a small gap(large anisotropy b=0.22 mm. Figure &) four parameters arg ay, as, anda;q. (This fit has a re-
shows that the transition from compact growth to ramifiedducedy? that is about equal to the average of those obtained
growth occurs near lotfj=4 as it did with smooth plates. by fitting linear, two-parameter fits to each data set individu-
We perform a three-parameter fit to the data in Fig) for  ally. However, the four-parameter fit reduces the effect of

o
—P
B
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FIG. 6. Scaling of patterns produced with the lattices witincles 0% defects(squares3% defects, andtriangles 10% defects. Data
come from many flow realizations at different flow ra@st one gapb=0.22 mm, with five patternéwith different areasfrom each flow
realization.(a) p’ plotted vst’. The four-parameter, linear least-squares fit gxe$.69+0.01 and(lowest line a=0.53 for 0% defects,
(middle line a=0.65 for 3% defects, anttop line) a=0.87 for 10% defects, for the scaling functige,=at’ (b) p’ plotted vst’. The
data are smoothed using an averaging window of seven data p@ints./t’ Y2 plotted vst’ no longer shows a compact-growth regime
wherep’/t’'¥2is constant for the defective plated) p’/t’*? plotted vst’. The data are smoothed using an averaging window of seven data
points.

uncertainty in the individual slopes from washing out theThus, ¢’ decreases with increasing defect density. For in-
trend in the intercepts that can be detected by examination aftance, for 10% defects;’ =0.70 (a 30% decrease in the
the data[see Figs. @) and €d)].) Thus, for the scaling effective surface tension
function, p’ =at’? z=0.69+0.01, whilea depends on the Figure 7 shows some patterns from which the perimeters
density of defectsd=0.52+0.06 for 0% defectsa=0.65 were obtained for lattices with 0%, 3%, and 10% defects.
+0.07 for 3% defects, and=0.87+0.09 for 10% defecls  The patterns chosen for display here are those obtained at the
As suggested by models of unstable interface growth irend of flow realizations. We do not observe any clear shift in
the presence of quenched disordl&é], the role of the de- the transition points in Ca between different morphology
fects might be thought of as a rescaling of an effective surphases. However, we do observe that the nature of these
face tension. For instance, the effect of the defects in thelifferent morphology phases is drastically changed by the
scaling functionp’=at’? contained in the parametex  addition of defects. In all cases, the randomness of the pat-
(which depends on the amount of defectsan be absorbed terns seems to increase as the defect density increases. For
into t’. Recall thatt’ is proportional too~2. This surface the surface tension dendritic pattern shown at the lowest val-
tension, o, in t' can be replaced by an effective’ ues of Ca(see Fig. 7, the degree of definition of the den-
=(ag/a)Y@ g, such that for the perfect lattice’ =¢.  dritic tips seems to decrease as the defect density increases.



PRE 60 EFFECT OF LATTICE DEFECTS ON HELE-SHAW FLOW . .. 1773

12"|""|""|""

of L

% defects

o
i
e
e
o
-

FEE R 82 4 ¢

0 10 20 30 40 50 60
Ca

FIG. 7. Percentage of defects plotted vs capillary number £Q/(ob). Patterns from the end of flow realizations at the corresponding
Ca are shown as data points on the plot. The vertical scaléshawing the size of the pattepnis 25 cm long.

70

At 10% defects, the “surface tension dendrite” has a rather

random looking shape, as opposed to the more defined den-

dritic tip shape seen with the perfect lattice. We see the ef- 16 T
fects of lattice defects most prominently in the morphology
of the kinetic dendrites. Kinetic dendrites produced with the
perfect lattice can exhibit needle fingers with almost no side
branching. We always observe significant side branching on
kinetic dendrites produced with 3% or 10% defects. With
10% defects, the defect-enhanced ramification produces ki-
netic dendrites that vary significantly from the “classical”
dendrite shape with regular side branching extrusions, which
are observed with 0% and 3% defects.

We observe other specific qualitative features of kinetic
dendrites which change with defect density. Figure 8 com-
pares kinetic dendrites produced at roughly the same flow
rate but with different lattice defect densities. Clearly, the
finger width decreases and the side branching amplitude in- A SR PPN VO R B
creases with increasing lattice defects. 0 2 4 6 8 10 12 14 16

x (cm)

IV. CONCLUSIONS
] . i i . FIG. 8. Time series of patterns for development of dendri@s:
We have reexamined the scaling of dimensionless perimgy, defects, areal flow rate for finger @=11.7+0.4 cn#/s; (b)
eter,p’, versus dimensionless time, for patterns produced 3% defects, Q;=10.9+0.5 cnf/s; () 10% defects, Q;=11
in a radial Hele-Shaw cell. This scaling shows that, in gen—+2 cn?/s. The time step between intermediate patterns for each
eral, as the gaph, decreases and as the flow ra€g, in-  finger is 0.6 s.
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creases, patterns become more ramified. Patterns that grow Defects to the imposed lattice in an anisotropic, radial
as circular bubbles scale as compact objects \witht'?, Hele-Shaw cell have a dramatic effect on the resulting pat-
with z=0.5. As bubbles begin to ramify by tip splitting or by tern morphology. The lattice defects tend to increase ran-
dendritic growth with side brancheg,increases. Over our domness in pattern ramification in all morphology phases.
size range of fingering patterns produced with smooth plate§/hus, the nature of dendritic growth can appear quite differ-
we measure an average exponenizef0.66+0.01. Adding ent from that of classical dendrites produced with a perfect
anisotropy in the form of an etched lattice does not signifi-lattice. In the regime of kinetic dendrites, with dendritic
cantly change this scaling behavior. In this case for fingeringrowth along the direction of a lattice axis, the main needle
patterns, we measure an average exponent=df.67+0.01.  fingers become thinner and the side branching amplitude in-
Addition of lattice defects to the case with anisotropy givescreases as the defect density increases.

an average exponeniz£0.69+0.01) which is not signifi-

cantly dlfferent from that for isotropic plates. The_: effect qf ACKNOWLEDGMENTS

the defects is to change the prefactor to the scaling function

p’=at'% The prefactora, increases as the defect density =~ We thank Dr. David Jasnow for his helpful comments.
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